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Abstract

Nitrate nitrogen losses through subsurface drainage and crop yield are determined by multiple climatic and management variables. The
combined and interactive effects of these variables, however, are poorly understood. Our objective is to predict crop yield, nitrate concentration,
drainage volume, and nitrate loss in subsurface drainage from a corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) rotation as a function of
rainfall amount, soybean yield for the year before the corn–soybean sequence being evaluated, N source, N rate, and timing of N application in
northeastern Iowa, U.S.A. Ten years of data (1994–2003) from a long-term study near Nashua, Iowa were used to develop multivariate
polynomial regression equations describing these variables. The regression equations described over 87, 85, 94, 76, and 95% of variation in
soybean yield, corn yield, subsurface drainage, nitrate concentration, and nitrate loss in subsurface drainage, respectively. A two-year rotation
under average soil, average climatic conditions, and 125 kg N/ha application was predicted to loose 29, 37, 36, and 30 kg N/ha in subsurface
drainage for early-spring swine manure, fall-applied swine manure, early-spring UAN fertilizer, and late-spring split UAN fertilizer (urea
ammonium nitrate), respectively. Predicted corn yields were 10.0 and 9.7 Mg/ha for the swine manure and UAN sources applied at 125 kg N/ha.
Timing of application (i.e., fall or spring) did not significantly affect corn yield. These results confirm other research suggesting that manure
application can result in less nitrate leaching than UAN (e.g., 29 vs. 36 kg N/ha), and that spring application reduces nitrate leaching compared to
fall application (e.g., 29 vs. 37 kg N/ha). The regression equations improve our understanding of nitrate leaching; offer a simple method to
quantify potential N losses from Midwestern corn–soybean rotations under the climate, soil, and management conditions of the Nashua field
experiment; and are a step toward development of easy to use N management tools.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Nitrogen is a naturally occurring element and adequate
amounts are essential for optimal plant growth and crop produc-
tion. Excessive N application or poor N management in Mid-
western agricultural basins that have subsurface drainage,
however, have been linked to increased nitrate loading in the
Mississippi river (Dinnes et al., 2002). Nitrogen enrichment of
estuaries and coastal marine environments contribute to hyp-
oxia, which appears to be increasing (Diaz, 2001). Hypoxia in

the northern Gulf of Mexico occurs because of low dissolved
oxygen (b2 mg/L) and trawlers are usually unable to harvest
shrimp or demersal fish at these low levels (Rabalais et al.,
2001). In addition to hypoxia, poor fertilizer management is
linked to increased nitrous oxide concentrations, which contrib-
ute to ozone depletion and the greenhouse effect (Mosier et al.,
2002).

Improved timing and rates of fertilizer application can sig-
nificantly reduce nitrate losses under drained soils (Randall and
Mulla, 2001; Jaynes et al., 2004). Lower N application may
result in less nitrate loading, but if the amount is too low, crop
yields and soil N content may be reduced (Jaynes et al, 2001;
Dinnes et al., 2002). Spring application generally results in
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lower nitrate loading than fall application and crop yield may
not be adversely affected (Randall and Mulla, 2001; Jaynes
et al., 2004). Precipitation is another factor that clearly affects
nitrate leaching and concentration under corn/soybean produc-
tion (Owens et al., 2000; Randall and Mulla, 2001).

Better tools are needed to predict the combined effects of
variables such as N timing, N rate, and precipitation on nitrate
loading and crop yield. The Executive Director for the Soil and
Water Conservation Society stated, “… quantifying conservation
may be among the most important challenges currently con-
fronting the conservation science community” (Cox, 2002). Ef-
fective quantification of conservation practices would result in
tools that are based on the best available science and can be easily
utilized by practitioners who face time constraints. Predicting
nitrate transport in artificially drained soils currently requires
complex process-based models such as RZWQM (Shaffer and
Delgado, 2002). Direct use of thesemodels is too time-consuming
for conservation planners and land managers. Simple to use tools
may lead to increased adoption of best management practices that
enhance water quality and profitability.

A relatively simple to use empirical model for estimating
nitrate leaching as affected by crop type and long-term N
fertilizer rate was developed by Simmelsgaard and Djurhuus
(1998). This model, however, did not predict nitrate leaching as
a function of N timing. Easy to use, regression-type models
have been developed recently to predict a variety of natural
phenomena (e.g., Bowden et al., 1998; McIsaac et al., 2001; Lee
et al., 2002; Kaspar et al., 2003), but doing so requires iden-
tifying an appropriate dataset.

Data from Iowa State University's Northeast experiment
station near Nashua Iowa suggests nitrate leaching and/or corn
yield was significantly affected by N application, N timing, and
precipitation. Other attractive qualities of the Nashua dataset are
that: it is thoroughly investigated with over 20 peer-reviewed
manuscripts, it includes numerous nitrogen managements, it is
relatively long-term (1990–2003) with a range of yearly
precipitation, and the soil association present on these 0.4-ha
plots represent approximately 575,000 ha where corn or
soybean were grown in Iowa in 2001. Even with the extent of
previously reported research from the Nashua study (e.g.,
Karlen et al., 1998; Bakhsh et al., 2000, 2002), quickly,
confidently, and objectively quantifying crop yield and nitrate
leaching effects from different long-term or average conditions
(e.g., N management, climate) at Nashua is not currently
possible.

Nitrogen is essential to agricultural sustainability but poor
nitrogen management may lead to environmental contamina-
tion. Clearly N application timing, rate, and precipitation sig-
nificantly affect nitrogen transport and corn yield, but the
combined or interactive effects of these variables is not clear.
Accurate quantification of nitrate loading and crop yield, as
affected by multiple variables at sensitive Midwest locations, is
a first step toward developing relatively simple predictive tools.
Our objective is to develop multivariate polynomial regression
equations to predict nitrate loading and crop yield as affected by
rainfall, N application timing, N application source (UAN or
swine manure), and N application rate. The equations are then

used to quantify nitrate loading and crop yield for a corn–
soybean rotation with several typical N management scenarios
for northeastern Iowa.

2. Materials and methods

2.1. Site description and management

A long-term dataset that included fourteen years (1990 to
2003) of weather records, crop yields, and tile drainage volume
and N concentrations was used. The dataset also contained
different N treatments such as application sources, rates, and
timing of application. The data were collected from 36, 0.4-ha
plots located at the Iowa State University Northeast Research
Station near Nashua, IA (43.0 °N, 92.5 °W). The field research
site was initiated in 1977 with tillage (moldboard plow, chisel
plow, ridge-tillage, and no-tillage) and cropping system
(continuous corn and both phases of a corn/soybean rotation)
treatments. From 1993 to 2003, chisel plow and no-till practices
were evaluated using different N sources (swine manure, UAN,
or both), times of N application (fall, spring, or split), and N
rates (78 to 260 kg ha−1). Each treatment was replicated three
times using a randomized complete block design. For this study,
chisel-plow and no-tillage treatment results were combined to
simplify the analysis and reduce the number of variables in the
developed regression equations. However, predominate tillage
does indirectly affect the predicted drainage (see Eq. (5) below).

The soils at this site are Kenyon loam (fine-loamy, mixed,
superactive, mesic Typic Hapludolls, USDA-NRCS, 2001a),
Readlyn loam (fine-loamy, mixed, superactive, mesic Aquic
Hapludolls, USDA-NRCS, 2001b), Floyd loam (fine-loamy,
mixed, superactive, mesic Aquic Hapludolls, USDA-NRCS,
2000), and Clyde silty clay loam (fine-loamy, mixed, super-
active, mesic Typic Endoaquolls, USDA-NRCS, 2004). These
soils have seasonally high water tables, and thus benefit from
subsurface drainage. According to ISU (2004) and USDA-
NASS (2002) surveys, approximately 575 thousand hectares of
corn or soybean were planted on these soil types in 2001
(personal communication, David James, GIS Specialist, NSTL,
August 2004). The soils and major management practices
applied to each plot from 1993 through 2003 are summarized in
Table 1.

2.2. Regression analysis

Multivariate regression was used to evaluate the effect of
selected variables (plus variable interactions and exponents)
from corn–soybean rotations on yearly crop yield (yieldc and
yields), total drainage from the two-year corn/soybean cycle
(drain_total), flow-weighted nitrate concentration over the two-
year corn–soybean cycle (Nconc), and nitrate load over the two-
year corn–soybean cycle (Nload_total). Corn yieldc was
predicted as a function of six independent variables: sum of
July and August rainfall (rainja, Karlen et al., 1998), average
July and August maximum temperature (tempja, Karlen et al.,
1998), N application rate (Nappli), the type of N (type=0 for
UAN and type=1 for swine manure), timing of N application
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weighted for application rates (Ntiming), and the soybean yield
prior to corn in the corn–soybean rotation (yieldsy1). Soybean
yield (yields) was predicted as a function of rainja and tempja;
different N rates applied to corn have not been found to affect
soybean yield (Stone et al., 1985; Bundy et al., 1993; Jaynes
et al., 2001). Regression equations were developed for total
drainage amount from the corn–soybean rotation (drain_total)
as a function of drainage index (DI) and observed rainfall
amount adjusted for crop transpiration (rainnet_total). Both DI
and rainnet_total are described below. Nconc was predicted as a
function of Nappli, type, Ntiming, yieldsy1, the calendar year
(January–December) rainfall from the soybean crop (rains, cm),
and calendar year rainfall from the previous corn crop (rainc).
Regression equations were developed for nitrate load (Nload_
total) as a function of drain_total and regression predicted flow-
weighted nitrate concentration (Nconcp). A stepwise procedure
was used for variable selection (Pb0.01). Through exploratory
data analysis, we selected a second-order multivariate polyno-
mial to describe the dependent variables yieldc, yields, Nconc,
drain_total, and Nload_total:

DV ¼ a0 þ a1ðv1Þ þ N þ axðvxÞ þ a12ðv⁎1v2Þ þ N þ ayxðv⁎yvxÞ
þ a11ðv1Þ2 þ N þ axxðvxÞ2 þ a0tðtypeÞ þ a1tðtype⁎v1Þ
þ N þ axtðtype⁎vxÞ þ a12tðtype⁎v⁎1v2Þ þ N

þ ayxtðtype⁎v⁎yvxÞ þ a11t ðtype⁎v1Þ2 þ N þ axxtðtype⁎vxÞ2

ð1Þ

Where DV is the dependent variable, ax are linear effect
coefficients, axx are quadratic effect coefficients, ayx are
interaction effect coefficients, vx are the independent variables,
the subscript y is the number of interactions in the equation, and
the subscript x is the number of independent variables in the
equation. An indicator (or dummy) variable was included in the
development of equations to predict yieldc and Nconc that
adjusts for the type of N application (type=0 for UAN and
type=1 for swine manure). The interaction variables (i.e., terms
with coefficients of ayx and ayxt) were not considered for Nconc

nor Nload_total because they were not significant at Pb0.15
using the RSREG procedure in SAS (Freund and Littel, 1991).

The independent variable Ntiming is a function of N applica-
tion rate and N-application dates

Ntiming ¼ ½ðdate⁎1app1 þ date⁎2app2Þ=ðapp1 þ app2Þ� þ 450:

ð2Þ
Where appx are nitrogen application amounts and datex are

application dates in number of days before January 1 of the
soybean planting year in the corn–soybean rotation. For ex-
ample, a May 1 single nitrogen application to corn is equivalent
to date1 of — 244; a single fall application prior to corn is
equivalent to date1 of day — 423. Nitrogen was applied at two
different times and two different rates for split applications,
which is the reason for app2 and date2. Ntiming is calculated to
more heavily weigh the higher N application rates (e.g., app2)
under split applications. To maintain positive Ntiming values,
Eq. (2) includes adding the constant +450.

A single drainage index (DI) was calculated for each plot as
DI=Σrainneti⁎draini /Σrainneti

2, where rainneti was equal to
annual rainc or rains minus annual estimated crop transpiration,
draini is annual subsurface drainage, and the subscript i

indicates the year (1994–2003). Annual crop transpiration
for corn and soybean was estimated as 24+yieldc⁎0.0007 and
12+yields⁎ .005; relationships between crop yield and transpi-
ration were developed from the long-term simulations of
Malone et al. (2007-this issue). Total rainfall (rain_total) over
the two year corn–soybean rotation adjusted for crop
transpiration was then computed as

rainnet total ¼ rainc � ð24þ yieldc
⁎:0007Þ þ rains

� ð12þ yields
⁎0:005Þ: ð3Þ

All variables and equations are summarized in Appendix A.
Data splitting is often used for model validation (e.g.,

Montgomery and Peck, 1982). One method of data splitting is
double cross-validation, which involves splitting the dataset

Table 1
Soils and major management practices applied to each plot from 1993 to 2003⁎

Treat
group

Plots Dominant soils
per plot

Drainage
Index per plot

Crop rotation Fertilizer type (application timing) Tillage

93–98 99–03 93–98 99–03 93–98 99–03

1 1 7 30 R/K R/F F/C 0.26 0.15 0.62 CS CS SM (Fall prior to corn) SM (Fall prior to corn) CP CP
2 2 16 20 R/K R F 0.22 0.28 0.55 CS CS UAN (Spring preplant) SM (Spring preplant) NT NT
3 3 24 28 R/K R/K K 0.17 0.19 0.14 SC SC UAN (LSNT) UAN (Spring preplant) NT CP
4 4 18 33 K K F/R 0.17 0.14 0.18 CS CS UAN (Spring preplant) SM (Fall)+UAN (late-spring) CP CP
5 5 21 26 R/K R/F F/K 0.10 0.22 0.21 CC SC UAN (Spring preplant) SM (Fall, corn and soybean) CP CP
6 6 32 36 R/K F/R F/K 0.17 0.15 0.14 SC SC UAN (Spring preplant) SM (Fall)+UAN (Late-spring) CP CP
7 8 9 19 R/F R/K F/K 0.48 0.16 0.25 CS CS UAN (LSNT) UAN (Split spring, LCD) CP CP
8 10 15 29 K R/K K/F 0.18 0.18 0.21 CS CS UAN (LSNT) UAN (Spring preplant) NT CP
9 11 23 27 K R/K F/K 0.17 0.18 na SC SC SM (Fall prior to corn) SM (Fall prior to corn) CP CP
10 12 17 34 K/F R/K R/K 0.31 na 0.19 SC SC UAN (LSNT) UAN (Split spring, LCD) CP CP
11 13 22 35 R/F R/K R/K 0.23 0.16 0.16 CC CS SM (Fall prior to corn) SM (Fall, corn and soybean) CP CP
12 14 25 31 R/K R/K F/R/C 0.28 0.17 0.33 SC SC UAN (Spring preplant) SM (Spring preplant) NT NT

⁎ R: Readlyn; K: Kenyon; F: Floyd; C: Clyde; CS: Corn–Soybean Rotation; SC: Soybean–Corn Rotation; CC: Continuous Corn; CP: Chisel Plow; RT: Ridge Till;
MP: Moldboard Plow; NT: No Till; UAN: Urea–Ammonia–Nitrate; LSNT: Late-Spring N test, includes small preplant application and larger Late-spring application;
Split spring application includes both small preplant and greater Late-spring application; LCD: Localized Compaction and Doming; SM: swine manure application.
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into two subsets, using the two subsets alternately as datasets for
regression equation development and prediction, and examining
the resulting regression equations (e.g., Montgomery and Peck,
1982; Kaspar et al., 2003). Briefly this process includes
developing regression equations from dataset 1; examining
the variables included in the equations compared to variables
included in the entire dataset; predicting yieldc, yields,
drain_total, Nconc, and Nload_total for dataset 2 from the
equations developed from dataset 1; then examining the slope
and intercept of the correlation between dataset 2 predictions
and observations. The regression equations were then devel-
oped from dataset 2 and the process repeated by applying the
new equations to dataset 1. Double cross-validation was
performed on all of the regression equations. Note, however,
that information presented in this manuscript is from the entire
dataset rather than the split datasets unless otherwise stated.

2.3. Data selection

Only data from 1994 through 2003 are analyzed in this
paper because of flood and drought conditions that affected
data from 1990 to 1993 (Table 2). Other data were excluded
from the analysis because some management practices are not
analyzed in this study (e.g., continuous corn; combined UAN
and swine manure fertilizer to corn), hail damage, limited
observations, extraordinary drainage, or unexplained outliers
(Table 2). Corn yield data from 1994 was removed from
analysis because unreported crop damage may have occurred.
The evidence supporting 1994 crop damage is the ratio of
average experiment station to average county corn yield (0.88),
which is similar to the 1995 value of 0.78 when hail damage
was reported. The average ratio of experiment station to county
corn yield between 1996 and 2002 was 1.11 with the lowest
ratio being 1.05.

Exclusion of “extraordinary” data allows analysis under
“ordinary” conditions. Of course, regression equations could be

developed that included all data and the extreme conditions
could be accounted for by additional variables or data normal-
ization. Including extraordinary conditions, however, compli-
cates the analysis, and increases the number of regression
equations and variables. Furthermore, inclusion of extraordi-
nary data may increase the possibility of bias for extreme
conditions at the expense of ordinary conditions. The extensive,
long-term dataset allowed sufficient points for analysis even
after excluding several years of extraordinary data.

2.4. Scenario development

After the regression equations were determined, they were
used to develop a set of predictions that quantify the effects of
tempja, rainc, rains, yieldsy1, Nappli, N source type (UAN or
manure), Ntiming, and DI on yieldc, drain_total, Nconc, and
Nload_total. These simulation results were then used to
investigate best management practices and to produce three-
dimensional needle and surface plots under the management
and conditions of the Nashua dataset. The three-dimensional
plots facilitated investigation of the interaction of two variables
on a dependent variable.

To develop the model scenarios, the dependent variables
were predicted in the order yields, yieldc, drain_total, Nconcp,
and then Nload_total because drain_total is a function of yields
and yieldc and Nload_total is a function of drain_total and
Nconcp. The scenario development required prediction of each
dependent variable on the same set of independent variables,
therefore drain_total was predicted as a function of predicted
yieldc and yields (not observed yield) and Nload_total was
predicted as a function of predicted drain_total (not observed
drain_total). Thus, the only independent variables for scenario
development were yieldsy1, Nappli, Ntiming, DI, rains, rainc,
and tempja. To avoid including both rainja and rainx (either rainc
or rains) as independent variables in scenario development,
rainja was predicted as a function of rainx. The variables rainja

Table 2
Data exclusion

Plots Years Dependent variables These data were excluded because:

All 1990–1993 All Flow did not occur in 1988 and 1989 because of drought, resulting in a nitrate buildup that leached in
subsequent years (Bjorneberg et al., 1996). 1993 was removed because it was a flood year (Shen et al., 1998)

5, 21, 26 1993–1999 All Continuous corn plots are not analyzed in this study.
13, 22, 35 1993–2000 All Continuous corn plots are not analyzed in this study.
4, 18, 33 2000–2003 All UAN and swine manure combined application prior to corn is not analyzed in this study (see Table 1)
6, 32, 36 2001–2003 All UAN and swine manure combined N application prior to corn is not analyzed in this study (see Table 1)
All 1995 Yieldc, yields The crop suffered hail damage (Andales et al., 2000).
All 1994 Yieldc Experiment station corn yield was much lower than average county corn yield, possibly because of

unreported crop damage.
27 and 17 All Drain_total These plots were known to drain differently from the other plots (Bakhsh et al., 2000).
8, 9, 19 2000–2001 Nconc, Nload_total,

yieldc

Only one late-spring N application to corn on June 19, 2000. These were the only plots to receive
late-spring N application without preplant N application.

5, 21, 26 2000–2003 Yieldc, yields, Nconc,
Nload_total

Nitrogen applied in the fall after corn harvest and prior to soybean planting, which is not analyzed in this study.

13, 22, 35 2001–2003 Yieldc, yields, Nconc,
Nload_total

Fall N application after corn harvest and prior to soybean planting, which is not analyzed in this study.

2, 16, 20 1999 Yieldc Clearly outside of the 99% confidence interval.
17 2001–2002 Nconc, Nload_total Clearly outside of the 99% confidence interval
9, 19 2002–2003 Nconc, Nload_total Clearly outside of the 99% confidence interval
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and rainx are different independent variables in the observed
dataset but they are correlated (R2=0.76)

Rainja ¼ �198þ 7:50⁎rainx � 0:0864⁎rain2x
þ0:000337⁎rain3x

ð4Þ

A cubic equation was used to predict rainja so that the largest
values of rainja were included in the developed scenarios.

Production of the three-dimensional plots involved plotting a
dependent variable as a function of two independent variables
while keeping the other independent variables constant. The
independent variables when held constant were assigned to
approximately average values for the Nashua data unless other-
wise noted: yieldsy1=3500 kg/ha, rains=85 cm, rainc=85 cm,
tempja=27 °C, DI=0.3, Ntiming=200, Nappli=150 kg/ha.

3. Results and discussion

3.1. Regression equations and cross-validation

Applying regression to the Nashua, Iowa data resulted in
equations to predict yearly crop yield (yields and yieldc), total
drainage from the two-year corn–soybean cycle (drain_total),
flow-weighted nitrate concentration over the two-year corn–
soybean cycle (Nconc), and nitrate load over the two-year corn–
soybean cycle (Nload_total). See Table 3 and Fig. 1 for
regression results and note that the equations and figures are

derived from the entire dataset rather than one of the split dataset
used for cross-validation. The regression equations described
87, 85, 94, 76, and 95% of variation in yields, yieldc, drain_total,
Nconc, and Nload_total, respectively (Table 3 and Fig. 1).
Predicting Nload_total using predicted yield (including poor
1994 and 1995 predictions) and predicted drain_total results in
slightly less accurate predictions than using observed drain_to-
tal, but the ratio between the RMSE and the mean of Nload_total
(approximately 30 kg N/ha) is still less than 0.25 (model
statistics using predicted yield and predicted drain_total to
predict Nload_total are: R2 =0.86; RMSE=7.0 kg N/ha;
dependent variable mean=30.8 kg N/ha; N=113). The observa-
tions were reduced fromN=120 (Table 3) toN=113 when using
predicted drain_total to predict Nload_total because plot 17 and
27 were excluded due to poor drainage predictions (see Table 2).
The effect of selected independent variables and selected
interactions on the dependent variables (yields, yieldc, drain_to-
tal, Nconc, Nload_total) is discussed after cross-validation.

The relationship between regression-predicted and observed
yieldc and Nconc can be improved by differentiating between
chisel- and no-tillage. Bakhsh et al. (2002) report higher
nitrate concentration and higher corn yield from chisel-
plow than no-till under spring pre-plant N application using the
1993–1998 Nashua data (reported nitrate concentration was
10.4 vs. 8.3 mg/L, Pb0.05). The most important effect of tillage
driving nitrate loading, however, may be increased drainage from
no-till compared to chisel-till. Using the 1993–1998Nashua data,

Table 3
Multivariate polynomial regression results for the Nashua, Iowa data

Dependent variable symbol and description a Polynomial regression equations b Model statistics c

Yields −117349− [1544⁎ rainja]− [2.76⁎ rainja2 ]+ [10276⁎ tempja]−
[2.16E+02⁎ tempja

2 ]+[6.09E+01⁎ tempja⁎ rainja]
N=126
R2=0.87

Soybean yield RMSE=221, kg/ha
DV mean=3434, kg/ha

Yieldc 5.32E+03+[3.96E+02⁎ rainja]− [5.82⁎ rainja2 ]−
[4.52E+01⁎ type⁎ rainja]+ [3.00E−03⁎ type⁎yieldsy1⁎Nappli]+
[3.35E−01⁎ tempja⁎Nappli]− [2.83E−02⁎ tempja⁎yieldsy1]

N=90
R2=0.85

Corn yield RMSE=395, kg/ha
DV mean=9831, kg/ha

Drain_total0.5 3.28E−02+[1.10E+01⁎DI]+[3.55E−02⁎DI⁎ rainnet_total]−
[8.06⁎DI2]+[1.23E−04⁎ rainnet_total2]

N=124
R2=0.94

Square root of drainage over the
two-year corn/soybean cycle

RMSE=5.00, cm
DV mean=26.0, cm

LN(Nconc) 1.46+[1.93E−04⁎yieldsy1]− [7.56E−03⁎ rains]+ [3.70E−03⁎Nappli]−
[6.16E−03⁎Ntiming]+ [4.25E−02⁎ rainc]− [2.37E−04⁎ rainc2]−
[1.08E−03⁎ type⁎yieldsy1]+ [2.16E−07⁎ type⁎yieldsy12 ]+
[4.30E−03⁎ type⁎Ntiming]

N=120
Natural logarithm of flow-weighted nitrate

concentration over the two-year
corn/soybean cycle

R2=0.76
RMSE=1.90, mg/L
DV mean=12.5, mg/L

Nload_total0.5 −5.68+[1.35⁎drain_total0.5]+ [2.11⁎ ln(Nconcp)]−
[3.30E−02⁎drain_total]

N=120
Square root of nitrate loss in drainage

over the two-year corn/soybean cycle
R2=0.95
RMSE=4.20, kg N/ha
DV mean=29.7, kg N/ha

a Note that the dependent variables drain_total, Nconc and Nload_total were transformed to conform to assumptions associated with polynomial regression analysis:
1) equal variance for all values of dependent variables (homoscedasticity) and 2) dependent variables are normally distributed.
b Climatic variables: rainja is the yearly July and August rainfall; tempja is the average July and August maximum temperature; rains is the yearly rainfall during

soybean; rainc is the yearly rainfall during corn; rainnet_total is rainfall during the two-year corn–soybean cycle adjusted for estimated crop transpiration.Management
variables: Nappli is total yearly "bio-available" N application (see text for description of "bio-available"); Ntiming is timing of N application weighted for application
rate. Miscellaneous variables: Nconcp is the regression predicted nitrate concentration in drainage over the two-year corn–soybean cycle; drain_total is the observed
drainage over the two-year corn–soybean cycle; DI is plot Drainage Index; yieldsy1 is soybean yield prior to corn in the corn/soybean rotation. Note: All included
variables are significant at the Pb0.01 level.
c Model statistics are reported for inverse of transformed data (e.g., drain_total not drain_total0.5). N is # of observations; DV mean is Dependent Variable Mean;

RMSE is Root Mean Square Error.
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Bakhsh et al. (2002) report about a two-fold drainage increase
under no-till (25cm vs. 12cm, Pb0.05) and a slightly smaller
non-significant nitrate load increase (20 vs. 13 kg N/ha).
Regression equation predicted drain_total is indirectly affected
by chisel- and no-till because DI is a function of predominant
tillage (see Eq. (5) below).

The double cross-validation analysis shows that the regres-
sion equations for predicting yields, yieldc, drain_total, Nconc,
and Nload_total are reasonably stable within the confines of the
Nashua dataset. The slopes and intercepts were within the 95%
confidence intervals, suggesting they are not statistically differ-
ent from one and zero. The double cross-validation analysis also
confirms that the variables listed in Table 3 contribute to yields,
yieldc, drain_total, Nconc, and Nload_total. All variables and
interactions were included in both splits of the cross-validation
at Pb0.15 except DI⁎rainnet_total was not included in one of
the splits predicting drain_total. Note that the SAS default value
for variable inclusion in multiple regression is Pb0.15 and
Pb0.01 was used in the stepwise procedure (Table 3).

3.2. Corn and soybean yield (yieldc and yields)

Nappli, tempja, yieldsy1, rainja, and type (UAN or swine
manure N source), were included variables to predict yieldc
(Pb0.01) but Ntiming was not (Table 3). Yieldc increased
slightly with decreasing tempja and increased more obviously

with increasing rainc and Nappli (Fig. 2a,b). Although corn
yield can increase with above average July and August maxi-
mum temperatures when rainfall is sufficient (Runge, 1968),
below average July and August temperatures and above average
July and August rainfall are generally associated with higher
corn yield (Hu and Buyanovsky, 2005; Wilhelm andWortmann,
2004; Thompson, 1986; Thompson, 1969).

Yieldc increased as yieldsy1 decreased but the trend is less
pronounced for high swine manure N rates (Nappli, Fig. 2b).
This relationship also holds if 1994 corn data is included in the
development of the regression equations. One possible expla-
nation is that higher yieldsy1 results in higher biomass, higher
microbial N immobilization, and subsequent net N mineraliza-
tion more out of sync with corn N demand. Net N immo-
bilization accompanying crop residue decomposition can affect
corn N fertilizer requirement and the time frame of net im-
mobilization may influence year-to-year and site-to-site vari-
ability in corn N fertilizer requirement (Green and Blackmer,
1995). A period of “excess asynchrony” between crop N
demand and N supply occurs following crop harvest in northern
temperate legume-based cropping systems (Crews and Peoples,
2005). Possibly “excess asynchrony” increases as yieldsy1
increases, but further research is needed to test this hypothesis.

The swine manure plots generally produced greater yieldc
than the UAN plots, especially at the higher application rates
(Fig. 2a,b). In addition, Nconc was lower in the manure plots

Fig. 1. Regression predicted vs. field observed yieldc (kg/ha), yields (kg/ha) drain_total (cm), Nconc (mg/L), and Nload_total (kg N/ha).
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than the UAN plot as discussed below. Singer et al. (2004)
concluded composted swine manure increased corn yield
compared to UAN fertilizer, and the data suggested that N
application was not responsible for the yield difference. It is
possible that N uptake efficiency from improved soil physical,
chemical, and biological properties may interact to increase
crop yield in swine compost applications (Singer et al., 2004).

Yields increased with increasing rains at high tempja and
yields decreased with increasing tempja at low rains (Fig. 2c).
Yamoah et al. (1998) reported increasing soybean yield in corn–
soybean rotations in Nebraska with decreasing August temper-
ature and increasing June–August precipitation.

3.3. Subsurface drainage from the corn–soybean rotation
(drain_total)

As DI and rain_total increased, drain_total increased substan-
tially (Fig. 2d). For example, drain_total under swine manure
application increased from 8.2 to 47.2 cm with an increase of DI
from 0.1 to 0.5 under otherwise average conditions. The
substantial effect DI has on drain_total is due to the variability
in drainage classification among the 36 plots. The soils are
classified as poorly and very poorly drained (Clyde), somewhat
poorly drained (Floyd and Readlyn), and moderately well and
well drained (Kenyon) (USDA–NRCS, 2000, 2001a, 2001b,
2004 — Official Soil Series Descriptions for the three soils).

Drainage index (DI) is correlated with the approximate soil
fractions within each plot and tillage according to the equation
(R2 =0.72; variable inclusion of Pb0.1; N=28)

DI ¼ 0:27þ 0:11⁎ð f � kÞ � 0:09⁎till� 22:6⁎c⁎ð f � kÞ
þ 76:2⁎c2 þ 0:10ð f � kÞ2 ð5Þ

where c, f, and k are the approximate fractions of Clyde,
Floyd, and Kenyon soil for each plot (Bakhsh and Kanwar,
2004) and till is 1 for chisel-plow and 0 for no-till. Plots 3, 24, 28,
10, 15, 29, 17, and 27 were excluded from this analysis either
because of extraordinary drainage patterns or because they had
both no-till and chisel-plow between 1994 and 2003 (see
Tables 1 and 2). DI increases as the fraction of Clyde and Floyd
soil increases, and DI decreases as the fraction of Kenyon soil
increases. In addition, chisel-till produces less drainage than no-
till, which is consistent with Bakhsh et al. (2002). Note that only
plots 30 and 31 contained Clyde soil (Table 1). Computing a
drainage index for each plot was a simple method to index plots
for drainage propensity, which appears to be a function of the
predominant tillage and soil differences. Although DI is specific
to the Nashua field data, it may be more generally applicable
because it is correlated with the lateral hydraulic gradient (LHG)
calibrated by Ma et al. (2007-this issue) on the Nashua data
(DI=0.11[LN(LHG)]+0.29; R2 =0.78; N=30). Ma et al. (2006)
did not calibrate LHG for the highest drainage plots; if these

Fig. 2. Three-dimensional representation of regression predicted yieldc (kg/ha), yields (kg/ha), and drain_total (cm), as affected by selected variables. The circles
represent UAN application and the squares represent swine manure application. Note that surface plots rather than needle plots were produced for yields and drain_total
because Nappli was not an included variable for prediction (Table 3). Needle-plots were produced for yieldc because it was a function of Nappli, and thus fertilizer
type— UAN or swine manure (Table 3). Independent variable units are: yieldc (kg/ha), yields (kg/ha), tempja (C), Nappli (kg N/ha), yieldsy1 (kg/ha), drain_total (cm),
DI (unitless), rainc (cm), rains (cm), and rain_total (cm).
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were determined the correlation between DI and LHG would
likely improve.

3.4. Nitrate conc. in subsurface drainage from the corn–
soybean rotation (Nconc)

Ntiming, yieldsy1, rains, rainc, Nappli, and type were selected
as independent variables to predict flow-weighted nitrate con-
centration (Pb0.01, Table 3). Nconc decreased with increasing
Ntiming and decreasing Nappli under both manure and UAN
fertilizer applications (Fig. 3a,b). For example under average
conditions and swine manure application Ntiming of 30 and 200
result in Nconc of 15.8 and 11.5 mg/L (Fig. 3a,b). Randall and
Vetsch (2005) report lower N loss with spring compared to fall
anhydrous application in southern Minnesota.

Nconc decreased with increasing rains, possibly because of
dilution (Fig. 3a). Owens et al. (2000) also reported higher

nitrate concentration under lower precipitation. Also, Nconc
increased with increasing rainc at low rainc and then plateaued
(Fig. 3b). When rainc was low, possibly less mineralization
occurred resulting in lower Nconc. Mineralization may be
greatest with soil moisture near field capacity and decline with
soil drying (Cassman and Munns, 1980).

The second most influential variable with a partial R2 of 0.12
was yieldsy1. Nconc increases with increasing yieldsy1 (Fig. 3c).
This relationship appears consistent with the “excess asynchro-
ny” hypothesis discussed above that increasing yieldsy1 may
increase microbial N immobilization and thus increase nitrogen
asynchrony resulting in: less nitrogen availability when corn
demand is high, more nitrogen becomes available when crop
demand is low or after harvest, and thus more N is lost through
drainage. More rapid Nconc increase with increasing yieldsy1
under swine manure compared to UAN (Fig. 3c) may also be
consistent with the “excess asynchrony” hypothesis because the

Fig. 3. Three-dimensional representation of regression predicted Nconc (mg/L) and Nload_total (kg N/ha), as affected by selected variables. The circles represent UAN
application and the squares represent swine manure application. Independent variable units are: Ntiming (day of year), rainc (cm), rains (cm), Nappli (kg N/ha), yieldsy1
(kg/ha).
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carbon content of swine manure favors the immobilization
process (Dauden and Quilez, 2004). Further research is nec-
essary to confirm this hypothesis.

Under all variable combinations, manure application resulted
in lower Nconc compared to UAN application (Fig. 3a,b,c).
Dauden and Quilez (2004) report less nitrate leaching under
swine manure application than inorganic fertilizer application,
possibly because of decreased available N due to enhanced
immobilization and/or fixation. Another explanation is that bio-
available N from swine manure was an overestimate because
Nappli from swine manure was the sum of inorganic N in swine
manure plus half the organic N in the manure. The average
Nappli from swine manure was about 150 kg/ha while the
average total organic N applied was about 60 kg/ha. Enhanced
crop N uptake efficiency in swine manure systems because of
improved soil physical, biological, and chemical properties
(Singer et al., 2004) may also contribute to lower Nconc.

3.5. Nitrate load in subsurface drainage from the
corn–soybean rotation (Nload_total)

The most sensitive single variable for Nload_total was rainc
(Fig. 3d,e,f). Under average conditions, Nload_total increased
by nearly a factor of two as rainc increased from 65 to 105 cm
(Fig. 3e).

Nload_total under swine manure application is equally
sensitive to yieldsy1 as to rainc under the variable range reported
(Fig. 3e,f). For example, under average conditions and swine
manure application, Nload_total increased about 18 kg N/ha
under the reported range of yieldsy1 and rainc. Also, under swine
manure N application, Nload_total has similar sensitivity to the
variable ranges reported for Ntiming and Nappli (Fig. 3e,f). For
example under average conditions and swine manure applica-
tion, Nload_total increased from 31.1 to 39.0 kg/ha with an
Ntiming decrease of 200 to 30 while Nload_total increased from
27.2 to 35.4 kg/ha with a Nappli increase of 100 to 200 kg/ha.

3.6. Regression predicted effects of N management scenarios

TheN-application strategy that resulted in the lowest predicted
Nload_total under average weather conditions and yieldc N
10,000 kg/ha was Ntiming=200, Nappli = 125 kg N/ha,
and type=swine manure (Table 4). The Nload_total under this
management was 29.1 kg/ha. In comparison, Nload_total
under average conditions and fall swine manure Nappli of
125 kgN/ha was 36.8 kgN/ha (Table 4). Nload_total=35.8 kg N/
ha and yieldc=9742 kg/ha under Nappli =125 kg N/ha,
Ntiming=200, and type=UAN (Table 4). Nload_total was
29.9 kg N/ha under average conditions and late-spring split
UAN application (Ntiming=240, Table 4). Therefore, the best
predicted strategy for the highest yieldc and lowest Nload_total is
spring swine manure applications. Nload_total calculations were
not extrapolated beyond their observed Ntiming; i.e., UAN-
fertilizer was not applied in the fall and swine manure was not
applied as a split application at the Nashua experiment station.

The 1994–2003 (corn in 1994 and soybean in 1995) regres-
sion predicted Nload_total was calculated using the observed

yearly rainc, rains, rainja, and tempja on a field with DI of 0.3 to
determine if the yearly average climate conditions result in
representative nitrate loading over an extended period with
typical precipitation and temperature fluctuations. Fall and
early-spring (Ntiming of 30 and 200) swine manure applications
of Nappli=125 kg N/ha result in ten year average Nload_total
of 35.8 kg N/ha and 28.4 kg N/ha. Therefore, the average
Nload_total difference over ten years using observed weather
(7.4 kg N/ha) is similar to the 7.7 kg N/ha difference for average
weather conditions discussed above. The Nload_total difference
between early and late-spring UAN application using average
weather conditions and observed weather are also very similar
(average Nload_total differences of about 6.0 kg N/ha).

Nload_total reduction of 7.7 or 6.0 kg N/ha may appear
small (5.1% and 4.0% of N application), but it could be signif-
icant when considering the Iowa Kenyon–Floyd–Clyde soil
association in corn and soybean–approximately 575,000 ha. In
addition, seemingly small edge-of-field nitrogen loading reduc-
tions may result in substantial nitrate loading reductions to the
Gulf of Mexico because of in-stream processes such as deni-
trification (McIsaac et al., 2001).

Compiling a set of regression results under local Nashua
conditions to quantify the effects of agricultural management on
yield and nitrogen loading on the Kenyon–Floyd–Clyde soil
association may be a first step toward development of a simple
to use tool to predict the effect of management alternatives
under different conditions such as climate and soil. A set of
predictions such as this may be a useful tool to help accelerate
adoption of best management practices. Developing tools to
objectively quantify the tradeoffs of management alternatives is

Table 4
Regression predicted effect of N-management scenarios (data are sorted by
Nload_total)

Ntiming Nappli
(kg N/ha)

Type Yieldc
(kg/ha)

Drain_total
(cm)

Nconc
(mg/L)

Nload_total
(kg N/ha)

200 100 SM 9550 27.0 9.6 27.2
240 100 UAN 9515 27.0 9.8 27.8
200 125 SM 10039 26.9 10.5 29.1
240 125 UAN 9742 27.0 10.8 29.9
200 150 SM 10527 26.8 11.5 31.1
240 150 UAN 9968 26.9 11.8 32.0
200 175 SM 11016 26.6 12.6 33.2
200 100 UAN 9515 27.0 12.6 33.6
240 175 UAN 10194 26.8 13.0 34.1
30 100 SM 9550 27.0 13.1 34.6
200 200 SM 11505 26.5 13.8 35.4
200 125 UAN 9742 27.0 13.8 35.8
240 200 UAN 10421 26.8 14.2 36.4
30 125 SM 10039 26.9 14.4 36.8
200 150 UAN 9968 26.9 15.1 38.1
30 150 SM 10527 26.8 15.8 39.0
200 175 UAN 10194 26.8 16.6 40.5
30 175 SM 11016 26.6 17.3 41.4
200 200 UAN 10421 26.8 18.2 42.9
30 200 SM 11505 26.5 19.0 43.7

Note that data is sorted by Nload_total and that the different N-management
strategies are: Ntiming of 30 or 200 for SM and 200 or 240 for UAN; Nappli of
100 to 200 kg N/ha; and type of SM or UAN.
DI=0.3; rainc and rains=85 cm; tempja=27 °C; yieldsy1=3500 kg/ha.
See Table 3 and/or Appendix A for variable descriptions.
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an urgent need of practitioners, program managers, budget
officials, and policy makers (e.g., Cox, 2002).

3.7. Limitations and further research

The development of regression equations from the Nashua
data is a step beyond qualitatively differentiating between
treatments, such as concluding spring N application reduces
nitrate loading compared to fall N application. These equations
offer a method to quantitatively evaluate limited treatment and
weather differences under the conditions of northeast Iowa.
However, regression equations are limited. One limitation is
that extrapolation beyond the experimental data is problematic.
Applying the equations beyond the observed climate and soil
conditions would require thorough testing and modification of
the regression models for those conditions. In addition, im-
portant management variables were not evaluated such as fall
and/or split fall/spring UAN application because they were not
part of the experimental design.

The development of the regression equations also required
ignoring data and outliers that could be important to fully
quantify nitrate loading under the observed Nashua conditions.
For example, data from floods and high nitrate loading after
drought were excluded from equation development. Other
important weather variability that drives nitrate loading such as
rainfall distribution within the season was not considered
because additional variables would increase the complexity and
the limited years of observations poses difficulty. Even long-
term experiments of over ten years may give biased estimates of
long-term water balance because of decadal level climate var-
iability and a few years can account for most of the runoff and
drainage (Keating et al., 2002). Finally, the variable determi-
nation performed in this research may be difficult to transfer to
other sites (e.g., DI).

To overcome some of the limitations of regression-based
modeling and to more comprehensively evaluate and quantify
yield and nitrate loading requires use of process-based models.
For example, process-based models allow extrapolation of
management and climate effects to conditions (climate, soil,
management) where observed data is sparse or non-existent.
Process-based models also allow cause and effect analysis
because observed data is necessarily limited. For example,
process-based models simulate daily crop variables and soil
conditions (e.g., crop phenology, N uptake, transpiration; soil
N, C, and water), which allow greater understanding of
treatment and/or climate differences on end-points of interest
such as nitrate loading or corn yield. Successful use of process-
based models will allow a more comprehensive understanding
of agricultural systems and will enhance development and
optimization of sustainable systems.

Direct use of process-basedmodels to predict nitrate transport
in artificially drained soil, however, is too time-consuming for
conservation planners and land managers. An option is to enter
simulation results of nitrate leaching and crop yield under
different conditions (soils, management, and climate) into a
database to use for economic and risk analysis. It is unrealistic to
simulate every combination of soil type, crop rotation,

fertilization schedule, climate scenario, etc. using deterministic
models (Haberlandt et al., 2002). Recent research has suggested
using a metamodeling approach to upscale field scale modeling
results of nitrogen leaching to regions (Wu and Babcock, 1999;
Borgesen et al., 2001; Haberlandt et al., 2002). Ametamodel is a
relatively simple mathematical function that approximates the
results of complex model simulations (Law and Kelton, 2004).
Types of metamodels include polynomial regression, splines,
and neural networks (e.g., Kleijnen and Sargent, 2000).
Development of the polynomial regression equations to the
Nashua field observed data suggests metamodels can be
developed to quantify nitrate leaching and crop yield under a
variety of climate and management conditions in artificially
drained soil. In the current research, quantifiable independent
variables were identified (e.g., nitrogen application rate,
nitrogen application timing, rainfall amount, soybean yield
prior to corn) that significantly affected the dependent variables
nitrogen leaching and crop yield, and dependent variables were
predicted with reasonable accuracy. Therefore, the developed
regression equations are a step toward development of a simple,
accurate, and objective method to quantify management and
climate effects on nitrate loading and crop yield for a region.

Appendix A. Equation and variable summary

DV ¼ a0 þ a1ðv1Þ þ N þ axðvxÞ þ a12ðv1⁎v2Þ
þ N þ ayxðv⁎yvxÞ þ a11ðv1Þ2 þ N þ axxðvxÞ2
þ a0tðtypeÞ þ a1tðtype⁎v1Þ þ N þ axtðtype⁎vxÞ
þ a12tðtype⁎v⁎1v2Þ þ N þ ayxtðtype⁎v⁎yvxÞ
þ a11tðtype⁎v1Þ2 þ N þ axxtðtype⁎vxÞ2 ð1Þ

Ntiming ¼ ½ðdate⁎1app1 þ date⁎2app2Þ=ðapp1 þ app2Þ� þ 450

ð2Þ
Rainnet total ¼ rainc � ð24þ yield⁎c :0007Þ þ rains

� ð12þ yield⁎s 0:005Þ
ð3Þ

Description of selected variables (in order of presentation
above):

DV are the dependent variables yields, yieldc, drain_total,
Nconc, Nload_total.

ax are linear effect coefficients.
vx are the independent variables.
ayx and ayxt are interaction effect coefficients.
axx are quadratic effect coefficients.
axt are type⁎linear effect coefficients.
axyt are type⁎interaction coefficients.
axxt are type⁎quadratic effect coefficients.
The subscript x is the number of independent variables in the

equation.
The subscript y is the number of interactions in the equation.
The subscript t indicates a type coefficient.
Type indicates the type of N application (0 for UAN and 1 for

swine manure).
Yields and yieldc are the yearly corn and soybean yield in the

corn–soybean rotation (kg/ha).
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Drain_total is the total drainage from the two-year corn–
soybean cycle (cm).

Nconc is the flow-weighted nitrate concentration over the
two-year corn–soybean cycle (mg/L).

Nload_total is the nitrate load over the two-year corn–
soybean cycle (kg N/ha).

Ntiming is the application rate weighed timing of N
application (d).

Datex are N application dates relative to January 1 of the
soybean planting year.

Appx are nitrogen application amounts.
Rainnet_total is the total rainfall over the two year corn–

soybean rotation adjusted for crop transpiration (cm).
Rains and rainc are the calendar year rainfall from the soy-

bean and previous corn crop (cm).
Other variables (in alphabetical order):
DI is the drainage index. DI=Σrainneti⁎draini /Σrainneti

2,
where rainneti was equal to annual rainc or rains minus annual
estimated crop transpiration, draini is annual subsurface
drainage, and the subscript i indicates the year (1994–2003).

Nappli is the N-application rate (kg N/ha).
Nconcp is regression predicted nitrate concentration in drain

flow (mg/L).
Rainja is the July and August rainfall amount (cm).
Tempja is the average maximum July and August daily

temperature (C).
Yieldsy1 is the soybean yield prior to corn in the corn–

soybean rotation (kg/ha).
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